Conf. Dr. Ing. Cristina Muresan

Nr.crt.	Titlu lucrare	Scurta descriere	Cerinte	Nivel (licenta/master)
1	Simple control system design for autonomous surgeon using omni bundle https://www.quanser.com/products/omnibundle/#productdetails	Design of position control system using PIDs for the omni bundle equipment. The student designs and tests the control algorithm using Matlab simulations, implements and validates experimentally the design controller, analyses the results.	System theory Matlab programming skills are required, excellent knowledge of CE 1 and 2.	Master/ Licenta
2	Advanced control system design for autonomous surgeon using omni bundle https://www.quanser.com/products/omnibundle/#productdetails	Design of position control system using fractional order PIDs for the omni bundle equipment. The student designs and tests the control algorithm using Matlab simulations, implements and validates experimentally the design controller, analyses the results.	System theory Matlab programming skills are required, excellent knowledge of CE 1 and 2.	Master
3	Validation of a novel IMC controller on a vertical take off and landing (VTOL) system https://www.ni.com/en-us/support/model.quanser-qnet-vtol-board-2-0-for-ni-elvis-ii-iihtml	Study of the basic IMC method and the new version for improved disturbance rejection. Comparisons for a vertical take off and landing unit (Matlab simulation). Implementation and validation on the VTOL system. Analysis of results	System theory Matlab programming skills are required, excellent knowledge of CE 1 and 2.	Licenta
4	Proiectarea unor algoritmi de control pentru reglarea	Proiectarea unui regulator PID folosind diverse metode,	Teoria sistemelor Matlab	Licenta

	nivelului intr-un rezervor	implementarea si testarea	IRA1 si IRA2	
		acestora pentru reglarea		
		nivelului intr-un rezervor.		
	G 1/6 : 1	Comparatii si analiza rezultatelor	N. 4.1	26
5	Speech/facial recognition on	Research of state of the art.	Matlab	Master
	QBOT 2e system	Design and implementation of	Programming skills	
	1	an adequate algorithm for either		
	https://www.quanser.com/vide	facial or speech recognition		
	o/qbot-2-quarc/	using the QBOT 2e system.		
		Analysis of the results.	G	1 1 1
7	Design and implementation	Research on FO autotuners.	System theory	Master
	of a novel FO autotuning	Design of a novel approach and	Matlab programming skills are required,	
	method	comparison with similar methods. Simulation results.	excellent knowledge of CE 1 and 2.	
		Implementation and		
		experimental validation on		
8	Event-based PID control for	several dead-time processes. Study of event based concepts	System theory	Master
8	the anaesthesia system	and algorithms, study of	Matlab programming skills are required,	Master
	the anaestnesia system	anaesthesia and automatic	excellent knowledge of CE 1 and 2.	
		control, design of PID controller	excellent knowledge of CE 1 and 2.	
		for the anaesthesia system,		
		discrete-time implementation of		
		standard PID controller, event		
		based implementation of the PID		
		controllers, comparisons and		
		analysis of results		
9	Design of a patient simulator	Build a patient simulator	System theory	Master/Licenta
	and automatic drug dosing	(Simulink diagram) to run on a	Matlab programming skills are required,	
	system in general anaestehsia	computer/tablet + a myrio device	excellent knowledge of CE 1 and 2.	
		that is running the control		
		algorithm		
10	Direction and position control	Process the acquired EMG signal	System theory	Licenta
	using an EMG envelope signal	using a linear envelope. EMG	Matlab programming skills are required,	

	https://www.quanser.com/wp- content/uploads/2017/03/QN ET-Myoelectric-Datasheet- v1.0.pdf	control design for opening and closing the clamp on the servo.	excellent knowledge of CE 1 and 2. Signal processing	
13	Control predictiv sistem hemodinamic	Design of predictive controller for a benhmark simulator of the hemodynamic system (two inputs-two outputs, Matlab simulation)	System theory Matlab programming skills are required, excellent knowledge of CE 1 and 2.	Licenta
15	Experimental validation and analysis of advanced control strategies for velocity control	Mathematical modeling of a velocity system. Design of several advanced control algoroithms. Matlab simulations and comparisons. Experimental implementation and validation.	System theory Matlab programming skills are required, excellent knowledge of CE 1 and 2.	Licenta